Exercise 16

Graph the two basic solutions along with several other solutions of the differential equation.
What features do the solutions have in common?

$$
2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad \frac{d y}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
2\left(r^{2} e^{r x}\right)+r e^{r x}-e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
2 r^{2}+r-1=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{-1 \pm \sqrt{1-4(2)(-1)}}{2(2)}=\frac{-1 \pm \sqrt{9}}{4}=-\frac{1}{4} \pm \frac{3}{4} \\
r=\left\{-1, \frac{1}{2}\right\}
\end{gathered}
$$

Two solutions to the ODE are e^{-x} and $e^{x / 2}$. By the principle of superposition, then,

$$
y(x)=C_{1} e^{-x}+C_{2} e^{x / 2}
$$

where C_{1} and C_{2} are arbitrary constants.

Below is a graph of these two solutions.

e^{-x} blows up as $x \rightarrow-\infty$, and $e^{x / 2}$ blows up as $x \rightarrow \infty$.

